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ABSTRACT

The formulation of the sensor-specific error statistics (SSES) has been redesigned in the latest imple-

mentation of theNOAAAdvanced Clear-Sky Processor forOceans (ACSPO) to enable efficient use of SSES

for assimilation of theACSPObaseline regression SST (BSST) into level 4 (L4) analyses. The SSES algorithm

employs segmentation of the SST domain in the space of regressors and derives the segmentation parameter

from the statistics of regressors within the global dataset of matchups. For each segment, local regression

coefficients and standard deviations (SDs) of BSST minus in situ SST are calculated from the corresponding

subset of matchups. The local regression coefficients are used to generate an auxiliary product—piecewise

regression (PWR) SST—and SSES biases are estimated as differences between BSST and PWR SST. Cor-

rection of SSES biases, which transforms BSST back into PWR SST, reduces the effects of residual cloud;

variations in view zenith angle; and, during the daytime, diurnal surface warming. This results in significant

reduction in the global SD of fitting in situ SST, making it comparable with SD for the Canadian Meteoro-

logical Centre (CMC) L4 SST. Unlike the foundation CMC SST (which is consistent with in situ SST at night

but biased cold during the daytime), the PWR SST is consistent with in situ data during both day and night

and thus may be viewed as an estimate of ‘‘depth’’ in situ SST. The PWR SST is expected to be a useful input

into L4 SST analyses, especially for foundation SST products, such as the CMC L4.

1. Introduction

Sea surface temperature (SST; see the appendix for the

list of acronyms used in this paper) is a key environmental

variable that is routinely retrieved from satellite obser-

vations and is used in many applications. Several pro-

cessing centers generate level 2 (L2) SST products from

infrared satellite sensors data. To facilitate data exchange

and use, the internationalGroup forHighResolution SST

(GHRSST) has established the GHRSST Data Specifi-

cation revision 2.0 (GDS 2.0), format (the description is

available at https://www.ghrsst.org/documents/q/category/

ghrsst-data-processing-specification-gds/operational/).

One of theGDS 2.0 requirements is that sensor-specific

error statistics (SSES)—that is, estimates of SST bias

and standard deviation (SD)—should be appended to

each reported SST value. However, no specific guid-

ance was provided on how the SSES should be calcu-

lated. As a result, different SSES definitions were

implemented by EUMETSAT Satellite Application
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Facility on Ocean and Sea Ice (OSI-SAF; OSI-SAF

2009), NAVO (Cayula et al. 2004), NASA (Kilpatrick

et al. 2015), and NOAA in the Advanced Clear-Sky

Processor for Oceans (ACSPO) system (Petrenko and

Ignatov 2014). Although the SSES is specifically intended

to facilitate blending of different satellite L2 and L3

products and their assimilation into L4 analyses, the au-

thors are not aware of any documented improvements

in the data assimilation due to the use of any available SSES

data. Consequently, the GHRSST-XV meeting in June

2014 has reviewed existing SSES practices and suggested

revisiting those (GHRSST 2014, 197–199).

In this context, the ACSPO SSES has been redesigned

with the explicit objective to achieve a positive effect

on the L4 analyses. Typically, assimilation of satellite SSTs

involves correction of biases in satellite SSTwith respect to

in situ SST (orwith respect to a reference satellite product)

(e.g., Reynolds et al. 2002; Brasnett 2008; Donlon et al.

2012). Since many L4 products position themselves as

‘‘foundation’’ (defined at the depth below which no di-

urnal warming is present; Donlon et al. 2007) or ‘‘depth’’

(i.e., representative of in situ SSTs), our primary objective

was achieving a measurable improvement in estimation of

ACSPO SST biases with respect to in situ SST (and thus

minimize the need for an empirical bias correction as an

initial step of L4 processing). Another goal of the SSES

redesign was redefining the SSES SDs to reflect more re-

alistically the dependence of the retrieval errors on ob-

servational conditions. However, this paper focuses on the

SSES biases and leaves the evaluation of SSES SDs for the

future work.

As documented in Petrenko et al. (2014), the

baseline ACSPO SSTs (BSST; TS) are produced with

the regression equations proposed by Lavanant et al.

(2012):
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Here, T3.7, T11, and T12 are brightness temperatures (BTs)

observed at 3.7, 11, and 12 mm, respectively; DT 5 T11 2
T12; Su 5 secu 2 1, where u is satellite view zenith angle

(VZA); TS
0 is the ‘‘first guess’’ SST (8C) obtained by in-

terpolation of gridded L4 SST to the sensor’s pixels.

Currently, ACSPO uses L4 SST by the Canadian Meteo-

rological Centre (CMC) (Brasnett 2008). Both Eqs. (1) and

(2) are used in ACSPO with a single set of regression co-

efficients, ai, i 5 0, 1, . . . , 6, and bi, i5 0, 1, . . . , 5, trained

on a global dataset of matchups (MDS). Customarily, SST

retrieval errors are estimated with respect to in situ SSTs.

For regression algorithms, such asBSST, retrieval errors are

largely caused by the inaccuracy of global approximation

of a highly variable inverse relationship between BTs and

SST with a single regression equation, and with a single set

of coefficients. These errors essentially depend on the ob-

servational conditions, characterized by such variables as

VZA, total precipitable water (TPW) vapor content in the

atmosphere, wind speed, proximity to clouds, etc. (e.g.,

Castro et al. 2008; Xu et al. 2009; Petrenko et al. 2014).

To be realistic, the SSES should account for the de-

pendence of BSST errors on observational conditions.

This may be accomplished by separate estimation of

SSES for the segments of the whole SST domain, which

are relatively uniform in terms of retrieval errors. The

initial ACSPO SSES algorithm (Petrenko and Ignatov

2014) performed the segmentation of the SST domain in

terms of VZA and TPW. This approach, however, was

found inefficient because the real number of physical

variables affecting the retrieval errors is not limited to

these two variables. Some approaches suggested ac-

counting for more physical variables (underscreened

cloud, aerosols, wind speed, etc.; e.g., Castro et al. 2008;

Xu et al. 2009; Minnett 2014; Griffin 2014). However, it

remains unclear whether accounting for all physical

factors essentially affecting retrieval errors is possible.

In the redesigned ACSPO SSES, a different approach is

explored, in which the retrieval errors are considered as

functions of regressors (i.e., terms on the right-hand side of

the regression equations, excluding the offsets) rather than

certain physical variables. This way, the variations in BSST

can be explained with a limited number of arguments, no

matter how many physical variables on which the re-

gressors depend. The criteria for segmentation of the SST

domain in the space of regressors (R-space) are derived

from the statistical distribution of regressors within the

trainingMDS. During the algorithm training, these criteria

are used to subdivide the global MDS into subsets of

matchups belonging to specific segments. This allows for

calculation of each segment’s SSES SDs and local re-

gression coefficients. At the stage of the L2 production, the

SSES SDs and the local coefficients are obtained from the

LUT according to the regressors’ values at each pixel. The

local regression coefficients are used to create an auxiliary

SST product—piecewise regression SST (TPWR; PWR

SST)—and the SSES biases are calculated as the difference

between the BSST and PWR SST.

The theoretical basis for the segmentation of the SST

domain in the R-space is provided in section 2. The

implementation of the SSES algorithm in ACSPO,

version 2.4, is described in section 3. The performance

of the SSES bias correction is evaluated in section 4.

Section 5 summarizes and concludes the paper.
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2. Segmentation of the SST domain in the space
of regressors

Equations (1) and (2) can be rewritten as follows:

T
S
5 hT is

S i1 cT(R2 hRi)1 « . (3)

Here, R is a vector of regressors, TS
is is in situ SST, c is a

vector of regression coefficients, h*i denotes averaging
over the global training MDS, and « is the error of re-

gression approximation of TS
is. The vector of coefficients

is estimated with the least squares method (Bard 1974)

assuming that « has a Gaussian distribution with a zero

mean and SD 5 1:

c5D21h(R2 hRi)(T is
S 2 hT is

S i)i . (4)

Term D is a covariance matrix of regressors within

the MDS:

D5 h(R2 hRi)(R2 hRi)Ti . (5)

The covariance matrix of the estimated vector of co-

efficients [Eq. (4)] is D21. It follows from Eqs. (3)–(5) that

the SST estimate [Eq. (3)] is a function of a vector of re-

gressors R at a given pixel and the statistics of regressors

within the training MDS, hRi and D. This suggests that the

error dTS of the SST estimate [Eq. (3)] should also be a

function of these statistics. Differentiating Eq. (3) in terms

of c gives a relationship between dTS and the uncertainty

dc of the vector of coefficients:

dT
S
5 dcT(R2 hRi) . (6)

The variance of dTS is estimated from Eq. (6) as follows:

V(dT
S
)5 r2 , (7)

r5 [(R2 hRi)TD21(R2 hRi)]0.5. (8)

Parameter r can be viewed as a distance between R

and hRi in the R-space. In the past, a similar parameter

derived from a posteriori distribution of retrieved vari-

ables was used in the retrieval algorithms based on the

inversion of the radiative transfer model. Kozlov (1966)

used it as a metric in the space of retrieved variables.

Merchant et al. (2008) found that the errors of the op-

timal SST estimation increase with r. Equation (7)

suggests that a similar dependence takes place between

the variance of the SST, estimated with Eq. (3), and the

r derived from the distribution of regressors within the

MDS. Following Kozlov (1966), we refer to the r as

the Fisher distance in the R-space.

Equation (7) was derived under the aforementioned

assumptions regarding the error « of the baseline re-

gression SST. In reality, the V(dTS) may not be equal

to r2, but, as shown below in section 3, it remains a

quasi-monotonic function of r. Therefore, a segmen-

tation of the SST domain in terms of r may be viewed

as a proxy for segmentation in terms of V(dTS). An-

other advantage of using r as a segmentation param-

eter follows from the fact that r is an argument of the

Gaussian approximation of the probability density

function (PDF) of R within the training MDS. The

standard expression for this PDF (Bury 1975) has the

following form:

P(R)5 [(2p)Ndet(D)]20.5 exp[2[(R2 hRi)TD21(R2 hRi)]/2] . (9)

Considering Eq. (8), Eq. (9) can be rewritten as follows:

P(R)5 [(2p)Ndet(D)]20.5 exp[2r2/2] . (10)

Here, N is the dimensionality of R, that is, the number

of regressors from which the R-space is constructed. It

follows from Eq. (10) that r characterizes the extent,

to which R is represented in the training MDS. Given

the PDF by Eq. (10), r2 has a x2 2 distribution with N

degrees of freedom (Bury 1975). The PDF of the x2 2
distribution has a maximum at some small value of r

and rapidly declines with increasing or decreasing r.

This simplifies the segmentation process by limiting

the range of considered r values.

Note that whereas Eq. (7) characterizes the average de-

pendence ofV(dTS) on r over all directions in theR-space,

such dependencies may vary with specific directions. For

example, assuming that themean vector hRi corresponds to
some ‘‘mean’’ value of the atmospheric absorption t, the

nonlinear dependencies of BTs on the t may result in dif-

ferent dependencies of V(dTS) on r along the opposite di-

rections corresponding to decreasing and increasing t. To

account for the anisotropy of the retrieval errors in the R-

space, we introduce an orthogonal basis consisting of N ei-

genvectors of the covariancematrixDwith the origin at hRi
and perform segmentation in terms of r separately in each

of 2N orthants of this basis.

3. Implementation of SSES in ACSPO

The segmentation concept described in section 2 is the

foundation of the redesigned ACSPO SSES algorithm.

For the daytime, the R-space is constructed from the
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regressors of Eq. (1); that is, the vector of regressors has

the following six components:

R5 [T
11
, S

u
T

11
,DT

11212
,T0

sDT11212
,S

u
DT

11212
, S

u
]T.

(11)

For the nighttime, however, it was found that the five

regressors appearing in Eq. (2) are not sufficient to ade-

quately capture the full range of observational condi-

tions. Therefore, the set of R components was extended

and now includes the following nine components:

R5 [T
3.7
, S

u
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3.7
,DT

11212
,DT

3.7212
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sDT11212
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sDT3.7212
, S

u
DT

11212
,S

u
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3.7212
,S

u
]T. (12)

Here, DT3.7–12 5 T3.7–T12.

The performance of the described SSES algorithm is

explored in this paper using data from six satellite sen-

sors: Suomi-NPP VIIRS, Aqua and Terra MODISs,

MetOp-A and MetOp-B AVHRRs [both in the full

resolution area coverage (FRAC) mode with 1-km

spatial resolution at nadir], and NOAA-19 AVHRR

[in the global area coverage (GAC) mode with 4-km

spatial resolution at nadir], routinely processed atNOAA

with ACSPO. For all these sensors, the global MDSwere

collected from 15May 2013 to 8 August 2014 using clear-

sky BTs selected with the ACSPO clear-sky mask

(Petrenko et al. 2010) and drifting and tropical moored

buoys from the NOAA in situ Quality Monitor (iQuam;

Xu and Ignatov 2014; http://www.star.nesdis.noaa.gov/

sod/sst/iquam/data.html). The in situ SSTs were selected

using the iQuam flag showing the suitability for high-

accuracy applications. Every in situ SST was matched

with the nearest clear-sky satellite pixel within the 10-km

distance and the time period of 62 h.

TheMDS were used to calculate the statistics hRi and
D both for day and night.

Table 1 shows the total numbers of matchups in the

global MDSs for six satellite instruments mentioned

above. The basis in the R-space with the origin at hRi
was introduced as a set of eigenvectors of the covariance

matrixD, and the Fisher distances were calculated for all

matchups according to Eq. (8). Figure 1 shows histo-

grams of the matchups as functions of the Fisher

distance for six sensors. Recall that the Fisher distance

characterizes the extent, to which a given vector of re-

gressors R is typical within a given MDS, and, at the

same time, represents V(dTS). The shape of the histo-

grams is similar for all sensors: the majority of matchups

are concentrated within a limited range of r values,

approximately from 1 to 6; the histograms have maxi-

mums near r ’ 2 and sharply decline with decreasing

and increasing r. Figures 2 and 3 show daytime and

nighttime global biases and SDs of the BSST and PWR

SST, as functions of r, respectively. The statistics are

relatively stable in the range 1 , r , 6, and less so

outside this interval, due to decreasing density of

matchups (cf. Fig. 1). Note that r is not necessarily equal

to V(dTS)
0.5, as predicted by Eq. (7) for an ideal case of

standard Gaussian error of the regression SST. However,

the SDs in Figs. 2 and 3 near-monotonically increase

with r within the interval of stability, for all sensors

and for both BSST and PWR SST, during both day and

night, adding confidence in the selection of r as the

characteristic variable of the SSES parameterization.

Note also that compared with the BSSTs, the PWR

SSTs consistently produce more uniform biases and

smaller SDs, which are additionally more consistent

between different sensors.

The segmentation of the SST domain is performed by

partitioning each orthant of the R-space into 10 bins

with values of Fisher distance falling into the intervals

j 2 1 , r , j, j 5 1, 2, . . . , 10. Given N is the

TABLE 1. Total numbers of matchups in the global MDS collected from 15 May 2013 to 8 Aug 2014, total numbers of populated

segments including more than 10 matchups, and the percentages of matchups belonging to the unpopulated segments including 10 or

less matchups.

Day/night Suomi-NPP VIIRS Aqua MODIS Terra MODIS MetOp-A AVHRR MetOp-B AVHRR NOAA-19 AVHRR

Total number of matchups in the MDS

Day 108 355 85 534 85 065 104 047 107 440 92 823

Night 113 796 85 574 89 757 120 068 116 549 94 284

Total number of segments with more than 10 matchups

Day 202 201 199 202 206 204

Night 789 764 760 796 850 830

Percentage (%) of matchups belonging to the segments with no more than 10 matchups

Day 0.22 0.28 0.24 0.25 0.23 0.32

Night 2.65 3.52 3.12 2.56 2.67 3.37
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dimensionality of R, the total number of segments is

10 3 2N, which corresponds to 640 segments for the

daytime and 5120 segments for the nighttime algo-

rithms. The number of matchups in these subsets is quite

nonuniform, ranging from 0 to several thousands. SSES

SDs and local regression coefficients are only calculated

for ‘‘populated’’ segments that include more than 10

matchups. Table 1 also shows the total numbers of

populated segments and the percentages of matchups

belonging to the ‘‘unpopulated’’ segments with 10

matchups or fewer. The number of populated segments

in all cases is much less than the total numbers of con-

sidered segments. The fraction of matchups falling

into the unpopulated segments is 0.2%–0.3% for day

and reaches 2%–3% for night, due to more detailed

segmentation of the nighttime R-space. For the un-

populated segments, SSES biases are set to 0 and SSES

SDs are filled with not-a-number (NaN) value, in-

dicating that the corresponding SSES estimates are

unavailable.

When processing satellite data, the local regression

coefficients are used to calculate the PWR SST. Special

measures are taken to avoid amplification of PWR

SST errors caused by calculation of coefficients from a

small subset of matchups. Vectors f of local regression

coefficients are calculated as follows:

f5E21hh(X2 hhXii)(T
in situ

2 hhT
in situ

ii)ii . (13)

Here, hh*ii denotes averaging over a given subset of

matchups and E is a matrix constructed from the local

covariance matrix of regressors F by omitting the ei-

genvectors corresponding to the eigenvalues smaller

than klmax (where lmax is the maximum eigenvalue of

F). The value of the multiplier k5 1028 has been chosen

empirically to provide a reasonable trade-off between

the accuracy of fitting in situ SST with PWR SST and

the amplification of random noise in PWR SST. As a

result, the number of degrees of freedom for the esti-

mated vector of coefficients is usually less than the

number of regressors N.

FIG. 1. Histograms of Fisher distance produced from (top) day-

time and (bottom) nighttime matchups within the global MDS

collected from 15 May 2013 to 8 Aug 2014 (bin size Dr 5 1.0).

FIG. 2. Daytime (a),(b) biases and (c),(d) SDs of (a),(c) BSST and (b),(d) PWR SSTs w.r.t. in situ SST as

functions of Fisher distance. Data from the same MDS as in Fig. 1.
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The local regression coefficients and SSES SDs for all

segments are stored in the LUT along with other data

required for calculation of r and attributing pixels to the

specific orthants in the R-space: hRi, eigenvalues, and
eigenvectors of D. In ACSPO operational processing,

each pixel is first ascribed to a specific segment. If the

SSES SD for this segment is not NaN, then the fol-

lowing procedures are performed for this pixel: 1)

PWR SST is calculated using the local regression co-

efficients; 2) SSES bias is calculated as BSST minus

PWR SST; and 3) SSES SD is set to the corre-

sponding LUT value. Otherwise, if the LUT value of

SSES SD is NaN, then SSES bias is set to 0 and SSES

SD is set to NaN for this pixel. We expect that this

algorithm will be further optimized in the future

versions of ACSPO.

4. The performance of SSES bias correction

As stated in section 3, the SSES bias is defined as the

difference between the BSST and the PWR SST.

Applying the SSES biases to the BSST transforms it

back into the PWR SST. Hence, the PWR SST is an

equivalent of the debiased BSST. In this section, we

evaluate the performance of the SSES bias correction by

comparing the statistics of BSST and PWR SST with

respect to in situ SST and illustrate it with results of

processing satellite data with the ACSPO, version 2.40.

FIG. 3. As in Fig. 2, but for nighttime data.

TABLE 2. The ECT, global biases, and SDs of fitting in situ SST with BSST, PWR SST, and CMC SST over the full MDS collected from

15 May 2013 to 8 Aug 2014, for six sensors.

SST

product

Statistics

(K) Suomi-NPPVIIRS

Aqua

MODIS NOAA-19AVHRR

Terra

MODIS

MetOp-A

AVHRR

MetOp-B

AVHRR

ECT 1330 1330 1330 1030 0930 0930

Day

BSST Bias 0 0 0 0 0 0

SD 0.41 0.45 0.50 0.46 0.43 0.44

PWR SST Bias 0 0 0 0 0 0

SD 0.31 0.33 0.34 0.32 0.31 0.30

CMC SST Bias 20.19 20.20 20.21 20.06 20.01 20.01

SD 0.34 0.34 0.35 0.31 0.30 0.30

Night

BSST Bias 0 0 0 0 0 0

SD 0.33 0.35 0.46 0.35 0.38 0.36

PWR SST Bias 0 0 0 0 0 0

SD 0.25 0.26 0.29 0.26 0.27 0.26

CMC SST Bias 0.01 0.02 0.02 20.04 20.07 20.07

SD 0.27 0.28 0.29 0.29 0.31 0.29
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Table 2 compares the global statistics of fitting in situ

SST with the BSST and PWR SSTs over the full global

MDS collected for six satellite sensors from 15May 2013

to 8 August 2014, as described in section 3. Table 2 also

shows the equator crossing times (ECT) for these sen-

sors. Since, in this case, the same MDS were used for

both training and validation, the global biases for both

algorithms are 0. The PWR SST fits the in situ SST

substantially more precisely than the BSST: the corre-

sponding SDs are reduced from 0.41–0.50 to 0.31–

0.34K for the daytime, and from 0.33–0.46 to 0.25–

0.30K for the nighttime. Table 2 also shows the statistics

of fitting the same in situ SSTs with the CMC SST, in-

terpolated to satellite pixels. Recall that the CMC is a

foundation SST produced mainly from the nighttime

data. Therefore, it is very consistent with the nighttime

satellite data (although slightly biased cold with respect

to the nighttime matchups for the morning platforms

Terra,MetOp-A, andMetOp-B) but significantly biased

cold with respect to daytime matchups for the afternoon

platforms Suomi-NPP,Aqua, andNOAA-19. The PWR

SSTs make the global SDs with respect to matchups

comparable to (or even smaller than) the corresponding

SDs for CMC but does not produce global biases typical

for CMC.

In addition to the metrics commonly used to evaluate

the performance of the SST algorithms, bias, and SD

with respect to in situ SST, Merchant et al. (2009) in-

troduced another informative metric—sensitivity of re-

trieved SST to variations in true SST. This analytical

metric is calculated by replacing observed BTs in the

regression equation with simulated derivatives of the

BTs in terms of SST, and setting the corresponding

offset to 0. This metric, however, is not fully applicable

to the PWR SST. The input for existing radiative

transfer models, such as the Community Radiative

Transfer Model (CRTM; available online at http://ftp.

emc.ncep.noaa.gov/jcsda/CRTM/) is ‘‘skin’’ SST, that is,

the temperature of the upper ;10-mm layer of the

ocean rather than depth SST measured by drifting and

moored buoys (Donlon et al. 2007). Therefore, the

theoretically estimated sensitivity characterizes the

response of satellite SST retrievals to skin rather than

depth SST. On the other hand, the fact that the PWR

SST precisely fits in situ SST suggests that it may be

viewed as an estimate of depth SST. In this study, we

evaluate the responses of BSST and PWR SST to var-

iations in depth (rather than skin) SST, using a squared

correlation coefficient h2 between the satellite and

in situ SSTs. The meaning of h2 may be explained with

FIG. 4. Daytime statistics of (left) BSST and (right) PWR SSTs w.r.t. in situ SST, stratified within 108 lat 3 108 lon
boxes: (top) biases, (middle) SDs, and (bottom) squared correlation coefficients.
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the following relationship between the full variance of

TS, V0(TS), and the residual variance of the regression

between satellite and in situ SST, V(TS) (Bard 1974):

V(T
S
)5V

0
(T

S
)(12h2) . (14)

As follows from Eq. (14), h2characterizes a part of the

V0(TS) explained by variations in in situ SST.

Figures 4 and 5 show geographical distributions of the

biases, SDs, and squared correlations for VIIRS BSST

and PWR SST produced from the global MDS by ag-

gregating matchups within 108 latitude 3 108 longitude
boxes. Daytime BSST biases in Fig. 4 are mostly within

0–0.1K in the midlatitudes but significantly positive in

the Southern Hemisphere high latitudes and negative in

the tropics (between 08 and 208N) and to the north of

608N. The PWR SST reduces the negative biases in the

low latitudes, and to a lesser degree the positive biases in

the Southern Hemisphere high latitudes. The biases in

the northern and southern high latitudes, however, re-

main significant. This will be a subject of future work.

The reduction in daytime SDs from BSST to PWR SSTs

is 0.1–0.2 K over the most part of the global ocean. The

squared correlation between the BSST and in situ SST

has a minimum in the tropics, likely due to the effects of

daytime surface warming and large atmospheric humid-

ity, which significantly reduces the effect of SST at the top

of atmosphere. The PWR SST is better than BSST cor-

related with buoys in the low latitudes. The nighttime

regional statistics shown in Fig. 5 demonstrate similar

features, but with a lesser difference between BSST and

PWR SST, because the nighttime SST algorithm uses a

much more transparent band centered at 3.7mm and

because of the absence of the effect of the daytime sur-

face warming.

The described SSES methodology was implemented in

ACSPO, version 2.40, and used in L2 processing of sat-

ellite data. According to the methodology described in

FIG. 5. As in Fig. 4, but for nighttime.

TABLE 3. The fractions (%) of clear-sky pixels in which SSES SD is not defined, for six sensors (31 Jan 2015).

Day/night Suomi-NPP VIIRS Aqua MODIS Terra MODIS MetOp-A AVHRR MetOp-B AVHRR NOAA-19 AVHRR

Day 0.52 0.37 0.22 0.41 0.32 0.63

Night 2.07 2.34 2.14 2.25 2.52 2.66
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section 3, the SSES are defined during training for those

pixels that belong to the populated segments represented

in the training MDS with more than 10 matchups. This

has allowed providing the SSES estimates for the over-

whelming part of the clear-sky ocean pixels. As an ex-

ample, the relative fractions of the clear-sky SST pixels

with undefined SSES are shown in Table 3 from one day

(31 January 2015) of observations with six sensors. The

numbers in Table 3 are very consistent with the fractions

ofmatchups falling in the unpopulated segments shown in

Table 1.

Figures 6 and 7 show results of validation of BSST and

PWR SST using the independent datasets of matchups.

Figure 6 shows time series of daytime biases and SDs

for the BSST, PWR SST, and CMC SST with respect to

in situ SST for six sensors from 24 November 2014 to

10 March 2015. All curves were smoothed with a 7-day

running window. To discern the difference in the effects

of the diurnal surface warming on the sensors with dif-

ferent ECT, only those matchups were used for which

the time difference between satellite and in situ SST

measurements did not exceed 1 h. The daytime statistics

for PWR SST in Fig. 6 are more stable and consistent

between the sensors than the statistics for BSST. The

peak-to-peak ranges for the global SDs are reduced

from ;0.35–0.52 K for BSST to ;0.27–0.38 K for PWR

SST. The corresponding biases in the foundation CMC

SST are close to zero for the midmorningMetOp-A and

MetOp-B satellites, slightly negative for the late-

morning Terra, and close to 20.2 K for the afternoon

Suomi-NPP, Aqua, and NOAA-19. The PWR SST

brings global daytime SDs close to the CMC, but unlike

CMC it produces small and more consistent biases for

all platforms. This suggests that daytime ACSPO SSTs

corrected for SSES bias can be now assimilated into the

L4 analyses, on equal footing with the nighttime data

(recall that current L4s exclude daytime data with low

winds from analyses) and even used to produce a day-

time foundation L4 SST product, with performance

comparable with the existing L4 SSTs produced from

nighttime SST retrievals.

Figure 7 shows similar time series for night. As in

Fig. 6, the PWR SST reduces global biases and SDs

compared with the BSST and improves cross-platform

consistency of the statistics. The nighttime CMC biases

are more consistent between the sensors than during

daytime, although the biases for the midmorning plat-

forms MetOp-A, MetOp-B, and Terra are now colder

than for the afternoon platforms Suomi-NPP,Aqua, and

NOAA-19. As for the daytime, both the nighttime

global SDs of PWR SST and CMC SST are much lower

than for the BSST.

FIG. 6. Time series of daily daytime global biases and SDs of fitting in situ SST with BSST, PWR SST, and CMC, for six satellite sensors,

from 24 Nov 2014 to 10 Mar 2015.
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It is important to note that the correction of SSES

biases in the ACSPO, version 2.40, provides the re-

duction of instantaneous biases in every given SST im-

age. Figure 8 demonstrates the effect of the daytime bias

correction by comparing the images of BSST minus

CMC, SSES bias, and PWR SST minus CMC in a swath

projection taken over the equatorial Pacific Ocean on

19 December 2014. Cloud leakages in BSST are seen in

the left image as a fringe of colder pixels surrounding

clouds, whereas areas with warm deviations of BSST

from CMC SST are due to diurnal surface warming.

The image in the middle demonstrates that the SSES

bias effectively captures both effects. As a result, the

biases are reduced in the right image, showing the de-

viations of PWR SST from CMC.

Figure 9 shows an example of nighttime imagery in

the swath projection. The left image shows typical an-

gular artifacts in BSSTminus CMC. The BSST is slightly

colder than CMC SSTs in the middle and at the edges

of the swath, and slightly warmer at intermediate VZAs.

Cold biases caused by cloud leakages are also present.

The SSES bias shown in the middle image effectively

accounts for both artifacts in the BSST, which makes the

deviations of the PWR SST from CMC more flat and

uniform.

Figure 10 demonstrates the effects of SSES bias cor-

rection on the deviations of ACSPO SST from CMC

SST for Suomi-NPPVIIRS observations on 16 February

2015. The deviations of BSST from CMC are mainly

caused by cloud leakages and by variations in VZA.

During the daytime, warming in the upper surface layer

of the ocean is another factor. SSES biases capture all

these effects, to a different degree. The SSES bias cor-

rection appears efficient, as evidenced by noticeably

more uniform images of the PWR SST 2 CMC SST

compared with the BSST2CMC SST. Note that Fig. 10

represents a stringent test in the full VIIRS retrieval

domain for the SSES that was developed frommatchups

with in situ data that are available only in its constrained

subspace.

5. Summary and conclusions

The redesigned ACSPO SSES algorithm defines bias

of the baseline SST product [BSST, estimated with Eqs.

(1) and (2)] as the difference between the BSST and the

piecewise regression SST (PWR SST) introduced in this

study. Applying SSES biases to the BSST transforms it

back into the PWR SST. Comparison of the perfor-

mance of the BSST and PWR SST shows that the SSES

bias correction substantially improves a global agree-

ment with in situ SST. This is achieved by 1) segmen-

tation of the SST retrieval domain in the space of

regressors (rather than in the space of physical variables

FIG. 7. As in Fig. 4, but for nighttime.
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as is the customary practice in the SST community); 2) de-

riving the segmentation criteria from the statistical structure

of regressors within the training MDS; and 3) defining the

debiased BSST as PWR SST calculated with local re-

gression coefficients, separately derived for each segment.

The performance of the ACSPO PWR SST gives a

new perspective to the question, To what extent the

precision of fitting in situ SST with global regression

SST algorithm can be improved by stratification of re-

gression coefficients? The piecewise regression meth-

odology was previously implemented in Pathfinder

AVHRR and NASA MODIS SST processing (Evans

and Podesta 1998; Kilpatrick et al. 2001, 2015; Casey

et al. 2010) and in the more recent latitude band

(LATBAND; Minnett and Evans 2009) algorithms. In

the current PathfinderAVHRRSST product, regression

coefficients are stratified in terms of BT difference be-

tween 11- and 12-mm bands, considered a proxy for the

atmospheric humidity. LATBAND introduces separate

sets of coefficients for each 208 latitudinal band. Both of

these algorithms have reduced global SD with respect to

in situ SST by;0.02K compared to the case of using the

same equation with a single global set of coefficients

(Table 2 in Petrenko et al. 2014). In the redesigned

ACSPO SSES algorithm, the PWR SST reduces global

SD by 0.10–0.15 K during the day and by 0.08–0.15K at

night, bringing the global SDs in the satellite-retrieved

PWR SST to the level typical for ‘‘foundation’’ L4 SST

products, such as the CMC or Operational Sea Surface

Temperature and Sea Ice Analysis (OSTIA; Donlon

et al. 2012).

Thus, the ACSPO, version 2.40, effectively provides

users with two SST products, the BSST and the PWR

SST. The PWR SST is not reported in the output

ACSPO files as a separate layer, but it can be easily

obtained by subtracting the SSES bias from the BSST.

These two products have different characteristics.

The BSST provides a reasonable combination of pre-

cision with respect to in situ SST and sensitivity to

‘‘skin’’ SST (Petrenko et al. 2014). The PWR SST cor-

relates and agrees with in situ SST much better than

does the BSST, but it does not guarantee high sensitivity

to skin SST. Therefore, the PWR SST can be viewed as

an estimate of depth SST.

FIG. 8. Daytime images of BSST 2 CMC SST, PWR SST 2 CMC SST, and SSES bias in swath projection from Suomi-NPP VIIRS on

19 Dec 2014 over the equatorial Pacific Ocean.
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A full range of potential applications of the PWR SST

has yet to be determined. In particular, it is expected to

benefit producers of the foundation (CMC,OSTIA) and

depth (Reynolds) L4 SSTs, by reducing or eliminating

the need in the L4-specific ‘‘bias correction’’ during

assimilation ofACSPOSST data. The fact that the global

precision of daytime PWR SST is now comparable with

the precision of L4 SST (with the additional bonus of not

showing sensor-dependent biases with respect to

matchups) suggests that daytimeACSPOSST can be now

successfully assimilated into the L4 SST, similarly to the

nighttime retrievals, or they can be used to create a

daytime L4 SST from the daytime PWR SST. We em-

phasize, however, that although all analyses in this study

consistently suggest that the newACSPOSSES should be

of interest to L4 producers and have a positive effect on

their analyses, the ultimate test is assimilation into L4.

Work is currently underwaywith different L4 groups, and

its results will be reported elsewhere.

Along with SSES bias, which was discussed in this

study in detail, the ACSPO, version 240, also reports

SSES SD estimated as SD of BSSTminus in situ SST for

specific segments. The performance of the SSES SD has

yet to be evaluated. This can be done, for example, by

using it to better define the optimal weights with which

BSST should be assimilated into the L4 SST product.

Note that the SSES SD for the PWR SST has not been

included in the ACSPO, version 2.40, output because

the GDS 2.0 format allows for only one SSES set.

However, SSES SD for the PWR SST may be easily

added to the ACSPO output per users’ request. The

redesigned SSES algorithm presented in this paper and

implemented in version 2.40 of ACSPO should not be

considered a final version and will be further optimized

in the future. At this point in time, the following po-

tential areas of improvement are envisioned.

1) The fundamental limitation of the segmentation algo-

rithm is that some of the segments are represented

within the training MDS with insufficient numbers of

matchups. This makes the SSES estimates for such

segments less reliable. The current SSES LUTs have

been derived from MDS covering more than a year-

long time period, from 15May 2013 to 8 August 2014.

FIG. 9. Nighttime images of BSST 2 CMC SST, SSES bias, and PWR SST 2 CMC SST in swath projection produced from Suomi-NPP

VIIRS observations on 19 Dec 2014 over the equatorial Pacific Ocean.
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This time period may be further extended to ensure

better coverage of the problematic segments, pro-

vided that the sensor’s calibration remains stable.

2) More detailed segmentation of the SST domain

might allow for better discrimination of the SSES

for different observational conditions, but it would

further reduce reliability of SSES estimates due to

reducing the number of matchups belonging to each

segment. Further optimization of the segmentation

algorithm will be explored for a better trade-off be-

tween the two factors mentioned above.

3) Visual analysis of the PWR SST imagery shows that

most of the images do not include discernible artifacts

and discontinuities, although they are often composed

fromdifferent segmentswith different local regression

coefficients and SSTs. However, the possibility of such

undesirable effects is not excluded. This problem also

will be addressed in the next version of ACSPO.

4) In addition to SSES, the GDS2 format requires

assessing the quality of L2 SST pixels using an in-

cremental scale from 0 to 5, where 0 corresponds to

the worst quality and 5 indicates the best-quality data.

Currently, the definitions of quality levels in ACSPO

are independent of SSES and based on the ACSPO

clear-sky mask (Petrenko et al. 2010): levels 5 and 4

correspond to ‘‘clear’’ and ‘‘probably clear’’ pixels,

respectively, and level 0 is assigned to all other pixels.

In section 2 we introduced an additional metric for

the quality of the SST estimate—Fisher distance,

which directly links the standard deviation of a given

SST estimate to the structure of the training MDS. In

the future this parameter can be used for further

specification of the ACSPO quality levels.
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